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Abstract

In this paper, we present InstruNET, a convolutional neural network (CNN) designed for
multi-label instrument classification. Originally, our objective was to develop an end-
to-end pipeline that could take a raw, mixed audio track and generate sheet music for
each individual instrument. To address this separation task, we experimented with Non-
Negative Matrix Factorization (NMF) and a custom Spectrogram U-Net to reconstruct
individual spectrograms from the mixed .wav file. However, due to limitations such as poor
signal reconstruction, high model complexity, and constrained computational resources,
we redefined our project scope to focus on the more foundational problem of detecting
instrument presence within mixed audio files. Under this new scope, we curated a high-
quality dataset from the BabySlakh dataset by extracting metadata, isolating stems, and
organizing them into folders grouped by instrument class. InstruNET was then trained on Mel
spectrograms of this refined dataset to perform multi-label classification across 14 classes.
Our model significantly outperformed different approaches, including YAMNet (72.1%)
and a shallow feed-forward network (58.9%), achieving an accuracy of 82.1%. These
results show the effectiveness of convolutional architectures for instrument identification in
mixed-instrument music files and lay the groundwork for future work in source separation
and transcription.

1 Introduction

1.1 Motivation

The challenge of obtaining high-quality sheet music for different instruments of songs directly from
unprocessed and raw audio is inspired by the increasing demand for AI-assisted tools in music
production, education, and performance analysis. While there exist numerous models that can take a
file of a specific instrument and turn it into sheet music, using note analysis and Fourier transforms,
there is still a lack of a direct pipeline from raw mixed-instrument audio files to sheet music for each
individual instrument. To create a pipeline like this, three main tasks need to be completed. Firstly,
we must accurately identify the instruments within the raw audio file to recognize instruments in
various parts of the song. Secondly, we need to divide the raw audio file into individual instrument
files. Thirdly, we use pre-existing tools that can be used to properly convert the files into sheet music.
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Figure 1: Full pipeline of raw audio to sheet music including the InstruNET task of
instrument identification.

1.2 Initial Scope
Initially, we wanted to explore the use of neural networks to both effectively identify and separate
individual instruments in a song, generating distinct audio files for each isolated instrument. Once
these audio files for each instrument were generated, the goal was to use a pre-existing tool to then
create sheet music for educational purposes, shown in Figure 1. However, the scope was narrowed
down to focus exclusively on the first task: identifying the instruments from the mixed song file,
deferring the separation and transcription for next steps. The re-scoping process is further expanded
upon in Section 3 and 4.

2 Data Exploration
2.1 Dataset
BabySlakH contains the first 20 tracks of the open source data set called SlakH. It includes the .wav
and MIDI files for each track along with all associated isolated instrument files [1]. For each track,
there is also metadata, which includes basic information regarding the instrument classes present,
the volume of the tracks and additional information. Moreover, each track in the dataset contains at
minimum a piano, bass, drums, and guitar part. From the metadata, we found the average number of
instruments per track to be 11. In addition, there is a large range of instrument distributions as shown
in Figure 2. We also found that the tracks have an average duration of 243 seconds.

Figure 2: Unique instrument counts in the 20 tracks of BabySlakh.
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2.2 UMAP
For further data exploration, we utilized UMAP to visualize the embeddings of individual instruments
across the 20 tracks to understand how similar instruments are in a 2-dimensional space. Specifically,
we down-sampled the audio, reducing the number of data points per second while preserving useful
information. Additionally, we fixed the audio length for each of the instrument stems to standardize
the data. From our initial attempts, we noticed equally scattered data points rather than any clustering
of similar instruments. This indicated that a simple reduction of dimensionality may not be sufficient.

To combat this, we explored creating a UMAP using Mel-frequency Cepstral Coefficients (MFCC),
a commonly used feature representation for audio signals [2]. We believed that this change would
help capture the instrument-specific characteristics more robustly. Furthermore, within the MFCC
technique of UMAP, we adjusted the parameters such as the number of MFCC coefficients, delta
features, frame aggregation, and normalization [3]. However, even with all these modifications,
UMAP was not very successful in clustering the data, leading us to utilize other data exploration
techniques, such as spectrogram and waveform visualizations to observe and learn from the data.

3 Preliminary Results and Analysis

To target the intial scope of our project our baseline model was NMF. This model was run on our
personal laptops with up to 16GB of RAM.

3.1 NMF

For a preliminary trial of splitting a mixed .wav file, an NMF was utilized to take a first shot at
isolating instruments and learn more about how a machine learning model can work towards finding
a solution to our challenge [4]. The model takes in a spectrogram of a track and uses a Euclidean cost
function to learn two matrices that correspond to feature importance and activations.

Figure 3: One spectrogram is split into 4 different spectrograms that can be used
to obtain individual audio files for each split.

While the NMF was successful in learning features and splitting the spectrogram to individual stems,
it was unable to fully capture the effects of a specific instrument sound, as shown on the right side of
Figure 3. The resulting stems could be heard to include sounds completely unrelated to the one the
stem was capturing. Signal to Distortion Ratios (SDRs) and correlation coefficients were calculated
for each stem using the best fitting actual stem [5]. Specifically, since the NMF outputs splits in no
specific order, we used the Hungarian algorithm to find the ordering of the outputs that best fits the
stems we have. We got negative SDR metrics for each split which show poor performance by the
model. This agrees with the findings we had by listening to the reconstructed signals. Additionally,
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correlation was near zero, pointing to no linear relationship between the reconstructed stem and
the real instrument. A NMF model has limitations due to its additive method of capturing features.
In complex cases, when instruments overlap, it is difficult for an NMF to properly recognize the
individual features.

3.2 Spectrogram U-Net and WaveNet

We attempted our initial scope of decomposing the spectrogram of a mixed audio track (mix.wav)
into its individual instrument stems, using a U-Net based model. Our custom U-Net architecture
used three convolutional blocks for both encoding and decoding, with skip connections to retain
spatial features across layers. The input of the model was a single-channel normalized spectrogram
of the mixed track and has an output of multiple spectrograms, each corresponding to the individual
instrument stems. We also used spectrogram normalization using dB scaling. However, the model did
not learn as meaningfully as expected based on the spectrograms produced, shown in Figure 4. This
was quantitatively evidenced by a high mean absolute error (MAE) of 1.48, which indicates poor
predictions. Additionally, attempts to increase the model’s complexity by adding parameters led to
GPU memory issues, limiting further experimentation. WaveNet is another convolution based model
which we attempted for our initial scope but was unsuccessful, due to time constraints [6].

Figure 4: One spectrogram is split into 10 different spectrograms that can be used to obtain
individual audio files for each split.

4 Re-scoping

These barriers across methods presented in Section 3 led us to pivot toward a more feasible multi-label
classification approach, focusing on detecting instrument presence rather than attempting an end to
end signal reconstruction.

5 Comparison Models

5.1 Baseline Model: Shallow Feed Forward Neural Network

Our baseline model performs multi-label instrument classification using a shallow feed forward
architecture. It consists of a single fully connected linear layer which is applied to a flattened log-Mel
spectrogram input which treats a spectrogram as a 2D vector. This vector is then mapped directly
to a vector of logits corresponding to the number of instrument classes. The model uses a binary
cross-entropy loss and the Adam optimizer. Other hyperparameters include a learning rate of 0.001
and a batch size of 16. Additionally, the dataset has an 80/20 training and test split. After training for
10 epochs, the model achieved a test accuracy of 58.9%. These results demonstrate that the model is
able to capture some structural patterns in the input feature. However, the model’s lack of spatial
awareness (due to the flattening) and inductive bias limits its ability for generalization. As a result, a
convolutional architecture or transformer-based model may improve performance significantly.

5.2 Pre-trained Model: YAMNet

YAMNet is a pre-trained deep CNN developed by Google. It was trained on the AudioSet dataset,
which contains over 2 million 10-second audio clips sourced from YouTube [7],[8]. The model
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supports classification over 521 audio classes. Although not explicitly designed for instrument
identification, YAMNet’s embeddings are useful for classification tasks due to the diversity and size
of its training data.

For our implementation, instrument stems across BabySlakH’s 20 tracks were preprocessed by
converting them to mono, 16 kHz .wav format, then normalizing and segmenting them into 2-second
clips. Each segment was then used as input to YAMNet, from which embeddings were extracted for
every overlapping window. These embeddings formed the basis of a classification pipeline designed
to map audio segments to specific instrument labels [9]. The extracted features were used to train
a logistic regression model [10]. The results of the model are recorded in the Section 7. While
YAMNet embeddings enable classification, there are some limitations to the model. For example,
since YAMNet is not fine-tuned for the specific dataset used in this project, there are some suboptimal
recognitions of less-represented or similar sounding, more specific, instruments [11].

6 InstruNET

The InstruNET is a CNN used for multilabel instrument identification in songs. It takes in Mel
spectrograms as input and outputs labels across 14 instrument classes (13 instruments and an
additional ‘no_music’ class).

6.1 Pre-processing

To prepare the dataset for training our InstruNET model, we began by extracting instrument informa-
tion from the metadata files associated with each track in the BabySlakh dataset. Originally, the audio
data was organized by track, with each track containing multiple isolated instrument stems. Using
the metadata, we systematically parsed each file to identify which instruments were present and
then reorganized the raw audio data into new folders, grouping the stems by instrument class. After
performing an initial data exploration, we identified the five most frequently occurring instruments in
the dataset—guitar, strings, piano, bass, and drums—and created an additional folder called combined,
which contained various multi-instrument permutations of these five categories. This was crucial for
our model to perform well in the multilabel classification task. Furthermore, to avoid sparsity issues
during training, we excluded less prominent instruments such as sound effects, percussive, and ethnic,
which only appeared in brief or isolated segments of the tracks. This helped create a more balanced
dataset which was used for training our InstruNET model.

6.2 Architecture

InstruNET consists of three convolutional layers with increasing channel sizes (32, 64, 128) as can
be seen in Figure 5. The increasing channel sizes allow for the network to learn more complex
features through the deeper layers. The smaller layers are used to detect simpler patterns, like edges
or highlighted regions in the spectrograms, whereas the deeper layers allow for more channels to
model more complicated features like instrument timbre, the unique sound quality of an instrument,
or harmonic structure. Each of the layers is followed by batch normalization which helps speed up
the training time of the model by normalizing layer outputs, therefore reducing covariate shift. Batch
normalization also makes the network less sensitive to weight initialization leading to a more stable
network. They are also followed by ReLU activation to introduce some nonlinearity into the model’s
pattern recognition. Max pooling is then used for downsampling, further lowering computation time,
and to add translation invariance by preserving the most prominent features of each region.

After the final convolutional block, we use an adaptive average pooling layer, which is flexible for
different input dimensions, to reduce the spatial dimensions to 1 by 1. This reduction helps the model
focus on a global summary of the input. This is then passed through two fully connected layers with
dropout between to prevent overfitting. Lastly, it outputs the probabilities across the 14 instrument
classes described above which are used to calculate binary cross entropy logit loss with the one-hot
encoding of the true labels of the inputs. Finally, a sigmoid function can be applied to obtain the final
instrument labels predicted by the model.
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Figure 5: Visual overview of the InstruNET architecture. The final layer outputs probabilities for 14
instrument classes using a sigmoid activation.

6.3 Hyperparameter Optimization

To determine the optimal hyperparameters for InstruNET, we began by fixing the model’s architecture
as mentioned above. The choice of hidden dimensions, number of layers, and activation function was
motivated by balancing model capacity with overfitting risk. Through early experiments, we noticed
that increasing the depth beyond three convolutional blocks offered minimal gains while significantly
increasing needed compute power.

To further fine-tune the model, we used a structured grid search approach over two hyperparameters:
dropout rate and kernel size, as shown in Table 1. We trained each iteration on 5% of the data and 10
epochs to enhance efficiency. We found that a dropout of 30% and a kernel size of 3 consistently
offered the best test accuracy. We hypothesize that these hyperparameter choices strike the best
balance between regularization and receptive field size. This manual grid search approach was
interpretable and effective in our case, since the parameter space was small and well-understood,
unlike higher-dimensional spaces that might require Bayesian optimization.

Table 1: Validation accuracy (%) for different combinations
of dropout rates and kernel sizes during grid search.

Dropout
Kernel Size 1 3 5

0.2 59.36 59.21 65.20
0.3 56.29 77.19 67.11
0.4 69.59 76.46 65.79

6.4 Early Stopping and Learning Rate Scheduler

The InstruNET training process uses both early stopping and adaptive learning rate scheduling to im-
prove model generalization and training convergence. Specifically, early stopping checks the training
and validation accuracy and stops the process if no improvement is seen over 5 consecutive epochs.
In addition, the adaptive learning rate scheduling with PyTorch’s ReduceLROnPlateau, decreasing the
learning rate by a factor of 0.1 after two epochs without validation accuracy improvement. Training
begins with an initial learning rate of 0.001, which is gradually lowered to support convergence.
Ultimately, these strategies work together to prevent overfitting, improve convergence, and ensure
model generalization for the test set.
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6.5 Interpretability

To interpret the model’s predictions, we generated saliency maps which highlight regions of the
spectrogram that are most relevant to the final labels. These visualizations help in interpreting where
the model focused to make a classification decision. In Figure 6, we show an example of a saliency
map for the piano class. In tracks with multiple instruments, the saliency maps reveal how the model
learns to capture important features. For piano, as seen in the figure, the model paid attention to both
the low and mid-frequency ranges most, capturing the broad frequency spectrum of piano tones. This
indicates that the model was accurately able to recognize not just isolated, prominent features, but also
more subtle, context-dependent patterns. Furthermore, since our model is multi-labeling, the model
must consider both the presence and absence of different instruments. Even with similar instruments,
it was able to accurately identify the unique spectral characteristics of different instruments.

Figure 6: Mel spectrogram of a piano stem (left) and its corresponding saliency map (right).

7 Results
7.1 InstruNET Results

Overall, the model performs strongly across most classes, as indicated by the predominantly green
bars representing true positives and true negatives in Figure 7. However, bass, strings, guitar, and
piano have higher false positive or false negative counts compared to others. This may be due to
overlapping frequency ranges, which make them harder to distinguish in a multi-label setting. In
future work, integrating temporal attention to better capture context over time may help improve
precision and recall.

Figure 7: Per-class confusion metrics on the test set for InstruNET.
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7.2 Comparison Results

The performance comparison in Table 2 highlights the effectiveness of InstruNET over both the
baseline and YAMNet models across all evaluation metrics. InstruNET achieved the highest accuracy
at 82.1%, significantly outperforming YAMNet (72.1%) and the baseline (58.9%). It also led in
precision (0.848) and recall (0.839), indicating strong performance in both correctly identifying
and retrieving relevant instrument labels. These results demonstrate that InstruNET’s convolutional
architecture is highly effective for multi-label instrument classification.

Table 2: Comparison of weighted metrics across Shal-
low Feedforward Neural Network (baseline), YAMNet
(pre-trained) and InstruNET.

Metric Baseline YAMNet InstruNET
Accuracy 58.9% 72.1% 82.1%
F1-score 0.772 0.776 0.832
Precision 0.779 0.738 0.848
Recall 0.773 0.731 0.839

8 Next Steps

Ultimately, the project resulted in a model capable of identifying the instruments in a mixed audio
track. As a result, the next step involves doing source separation to isolate each identified instrument
into distinct audio files. One way to do so, would be to use a similar technique to Demucs, a
state-of-the-art model developed by Facebook AI Research for music source separation tasks [12].
This architecture would involve adding an encoder-decoder structure with bidirectional LSTM layers,
enabling it to reconstruct time-domain waveforms with high resolution. Demucs’ architecture would
be useful for developing a unique model that can handle more of the instruments seen in the Slakh
dataset as Demucs can only handle bass, vocals, guitar and others. After obtaining the separated
instrument stems using an updated model, each audio file could be converted into MIDI format using
the open-source transcription tool Basic Pitch from Spotify [13]. Basic Pitch uses neural networks to
transcribe music into MIDI representations. The output from Basic Pitch for each instrument stem
can be exported as standard MIDI files. From this, a conventional music notation software such as
MuseScore can be used to generate legible sheet music [14]. This three-stage pipeline: instrument
identification, source separation, and transcription using Basic Pitch and MuseScore presents a
framework that will transform raw mixed instrument audio into sheet music for each instrument. This
tool could help greatly in improving the accessibility of music education and allow for musicians to
quickly and accurately turn recordings into playable written music scores.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Through looking at the abstract, claims were made regarding how existing
methods for music separation; however, there is not an accurate pipeline that can take a
raw audio and fully split into different instruments and create sheet music from it. This is
mentioned in the motivation and scope part of our introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Answer: [Yes]

Justification: In the UMAP, there are numerous techniques that could be used as next steps
to improve the reduction split. The NMF section also states some limitations regarding the
difficulty in splitting sound that has multiple instruments playing at once.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We do not have any theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

11



Justification: We discussed in the paper the way we adjusted the original models that were
found online - included in citation.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Github is on Quercus

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The baseline models that were used did not require training and test details as
they were sourced online or pre-trained models.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: There aren’t any statistical analyses that are reported

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
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Justification: The compute information for the baseline models are included in the baseline
models - section 3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: BabaySlakh is an openly available dataset. We linked it and referenced it on
this report. The work we did regarding baseline models were also taken through open-source
platforms (ex. Github) and are referenced as well.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The societal impacts are included in the abstract and introduction (motivation
section).
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: Yes, when using the YAMNet model, it is trained on AudioSet, which is a
dataset from YouTube videos. Even though there may be biases and privacy issues from
these video clips, the model produces a classification of 512 predefined, non-harmful labels.
As a result, even if there is a malicious user who inputs harmful audio waveforms, the model
will still output only instruments, ensuring that it won’t cause harmful outputs.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The pre-trained models are cited appropriately in the references section.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: No new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
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• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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